39 research outputs found

    Supersymmetric moduli of the SU(2) x R linear dilaton background and NS5-branes

    Get PDF
    We study several classes of marginal deformations of the conformal field theory SU(2) x R. This theory describes the near-horizon region of a stack of parallel and coincident NS5-branes and is related holographically to little string theory. We investigate the supersymmetry properties of these deformations and we elucidate their role in the context of holography. The conformal field theory moduli space contains "non-holographic" operators that do not seem to have a simple interpretation in little string theory. Subsequently, we analyze several NS5-brane configurations in terms of SU(2) x R deformations. We discuss in detail interesting phenomena, like the excision of the strong coupling region associated with the linear dilaton and the manifestation of the symmetries of an NS5-brane setup in the deforming operators. Finally, we present a class of conformally hyperkaehler geometries that arise as "non-holographic" deformations of SU(2) x R.Comment: 38 pages, 1 figure, 1 table; version to appear in JHE

    Pomerons and BCFW recursion relations for strings on D-branes

    Full text link
    We derive pomeron vertex operators for bosonic strings and superstrings in the presence of D-branes. We demonstrate how they can be used in order to compute the Regge behavior of string amplitudes on D-branes and the amplitude of ultrarelativistic D-brane scattering. After a lightning review of the BCFW method, we proceed in a classification of the various BCFW shifts possible in a field/string theory in the presence of defects/D-branes. The BCFW shifts present several novel features, such as the possibility of performing single particle momentum shifts, due to the breaking of momentum conservation in the directions normal to the defect. Using the pomeron vertices we show that superstring amplitudes on the disc involving both open and closed strings should obey BCFW recursion relations. As a particular example, we analyze explicitly the case of 1 -> 1 scattering of level one closed string states off a D-brane. Finally, we investigate whether the eikonal Regge regime conjecture holds in the presence of D-branes.Comment: 49 pages; v2 corrected references and minor typos; v3 minor typos corrected, version to appear in NP

    Discrete Torsion, Covering Groups and Quiver Diagrams

    Get PDF
    Without recourse to the sophisticated machinery of twisted group algebras, projective character tables and explicit values of 2-cocycles, we here present a simple algorithm to study the gauge theory data of D-brane probes on a generic orbifold G with discrete torsion turned on. We show in particular that the gauge theory can be obtained with the knowledge of no more than the ordinary character tables of G and its covering group G*. Subsequently we present the quiver diagrams of certain illustrative examples of SU(3)-orbifolds which have non-trivial Schur Multipliers. The paper serves as a companion to our earlier work (arXiv:hep-th/0010023) and aims to initiate a systematic and computationally convenient study of discrete torsion.Comment: 26 pages, 8 figures, some errors correcte

    Worldsheet theories for non-geometric string backgrounds

    Get PDF
    We show that twisted doubled tori can be used to construct a general class of worldsheet models describing non-geometric string backgrounds. By employing a first order formulation of interacting chiral bosons, we first refine the analysis on the general conditions of worldsheet Lorentz invariance and then prove that twisted doubled tori provide good duality symmetric backgrounds. Subsequently we apply our general analysis to several examples which enable us to gain new insight on the difference between geometric, locally geometric and genuine non-geometric backgrounds.Comment: Latex, 25 pages; v2 Fixed typos; v3 Sections 2 and 3 expanded; v4 Published versio

    Discrete Torsion, Non-Abelian Orbifolds and the Schur Multiplier

    Get PDF
    Armed with the explicit computation of Schur Multipliers, we offer a classification of SU(n) orbifolds for n = 2,3,4 which permit the turning on of discrete torsion. This is in response to the host of activity lately in vogue on the application of discrete torsion to D-brane orbifold theories. As a by-product, we find a hitherto unknown class of N = 1 orbifolds with non-cyclic discrete torsion group. Furthermore, we supplement the status quo ante by investigating a first example of a non-Abelian orbifold admitting discrete torsion, namely the ordinary dihedral group as a subgroup of SU(3). A comparison of the quiver theory thereof with that of its covering group, the binary dihedral group, without discrete torsion, is also performed.Comment: 23 pages, 2 figures, references added and some typos correcte

    Stepwise Projection: Toward Brane Setups for Generic Orbifold Singularities

    Get PDF
    The construction of brane setups for the exceptional series E6,E7,E8 of SU(2) orbifolds remains an ever-haunting conundrum. Motivated by techniques in some works by Muto on non-Abelian SU(3) orbifolds, we here provide an algorithmic outlook, a method which we call stepwise projection, that may shed some light on this puzzle. We exemplify this method, consisting of transformation rules for obtaining complex quivers and brane setups from more elementary ones, to the cases of the D-series and E6 finite subgroups of SU(2). Furthermore, we demonstrate the generality of the stepwise procedure by appealing to Frobenius' theory of Induced Representations. Our algorithm suggests the existence of generalisations of the orientifold plane in string theory.Comment: 22 pages, 3 figure

    Scherk-Schwarz reduction of M-theory on G2-manifolds with fluxes

    Full text link
    We analyse the 4-dimensional effective supergravity theories obtained from the Scherk--Schwarz reduction of M-theory on twisted 7-tori in the presence of 4-form fluxes. We implement the appropriate orbifold projection that preserves a G2-structure on the internal 7-manifold and truncates the effective field theory to an N=1, D=4 supergravity. We provide a detailed account of the effective supergravity with explicit expressions for the Kaehler potential and the superpotential in terms of the fluxes and of the geometrical data of the internal manifold. Subsequently, we explore the landscape of vacua of M-theory compactifications on twisted tori, where we emphasize the role of geometric fluxes and discuss the validity of the bottom-up approach. Finally, by reducing along isometries of the internal 7-manifold, we obtain superpotentials for the corresponding type IIA backgrounds.Comment: 43 pages, Latex; v3 typos corrected, one reference added, JHEP versio

    The Partition Function of the Two-Dimensional Black Hole Conformal Field Theory

    Get PDF
    We compute the partition function of the conformal field theory on the two-dimensional euclidean black hole background using path-integral techniques. We show that the resulting spectrum is consistent with the algebraic expectations for the SL(2,R)/U(1) coset conformal field theory construction. In particular, we find confirmation for the bound on the spin of the discrete representations and we determine the density of the continuous representations. We point out the relevance of the partition function to all string theory backgrounds that include an SL(2,R)/U(1) coset factor.Comment: 17 pages, references added and typos correcte

    Conformal chiral boson models on twisted doubled tori and non-geometric string vacua

    Full text link
    We derive and analyze the conditions for quantum conformal and Lorentz invariance of the duality symmetric interacting chiral boson sigma-models, which are conjectured to describe non-geometric string theory backgrounds. The one-loop Weyl and Lorentz anomalies are computed for the general case using the background field method. Subsequently, our results are applied to a class of (on-shell) Lorentz invariant chiral boson models which are based on twisted doubled tori. Our findings are in agreement with those expected from the effective supergravity approach, thereby firmly establishing that the chiral boson models under consideration provide the string worldsheet description of N=4 gauged supergravities with electric gaugings. Furthermore, they demonstrate that twisted doubled tori are indeed the doubled internal geometries underlying a large class of non-geometric string compactifications. For compact gaugings the associated chiral boson models are automatically conformal, a fact that is explained by showing that they are actually chiral WZW models in disguise.Comment: 37 pages; v2: minor improvements, version to appear in Nucl. Phys.
    corecore